Reg. No:					
_					

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations July-2022 ENGINEERING MATHEMATICS-III

(Common to all Branches)

Time: 3 hours Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- 1 a If f(z) = u + iv is an analytic function of z and if $u v = e^x (\sin x \cos y)$. Find L3 6M f(z) in terms of z.
 - **b** Find the analytic function whose real part is $e^x(x \sin y + y \cos y)$

L3 6M

6M

OR

- Evaluate $\int_{C} \frac{\sin^2 z}{\left(z \frac{\pi}{6}\right)^3} dz \text{ where } C: |z| = 1$
 - **b** Evaluate $\int_{C} \frac{\log z}{(z-1)^3} dz$ where $C:|z-1| = \frac{1}{2}$ using Cauchy Integral formula

UNIT-II

- 3 a Find the poles of the function $f(z) = \frac{z^2 + 1}{z^2 2z}$ and the residues at each pole
 - L3 6M

OR

- **4** a Find the bilinear transformation which maps the point's $(\infty, i, 0)$ in to the points **L3** 6M $(0, i, \infty)$
 - **b** Find the bilinear transformation that maps the point's (0,1,i) in to the points **L3 6M** (1+i,-i,2-i) in w-plane

UNIT-III

- 5 Find a real root of the equation $xe^x \cos x = 0$ using Newton-Raphson method. L3 12M
- 6 Find a positive root of $x^3 x 1 = 0$ correct to two decimal places by bisection L3 12M method.

UNIT-IV

7 Fit the curve of the form $y = ae^{bx}$ to the following data

b Find the poles and residues of $\tan h z$

L3 12M

X	0	1	2	3	4	5	6	7	8
У	20	30	52	77	135	211	326	550	1052

8 Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$

L5 12M

- (i) by Trapezoidal rule and Simpson's $\frac{1}{3}$ rd rule.
- (ii) Using Simpson's $\frac{3}{8}$ th rule and compare the result with actual value.

UNIT-V

9 Using Taylor's series method find an approximate value of y at x = 0.2 for the L3 12M differential equation $y' - 2y = 3e^x$, y(0) = 0. Compare the numerical solution obtained with exact solution.

OR

10 Using R-K method 4th order find y(0.1), y(0.2) and y(0.3) given that L3 12M $\frac{dy}{dx} = 1 + xy, y(0) = 2$

*** END ***